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A one-dimensional  p roces s  represent ing  the combustion of a powder sample on a metal  
subst ra te  at constant p r e s s u r e  is considered on the basis of a two-phase model of the t he r -  
mal decomposition of a condensed system. The resul ts  of numer ica l  computer  calculations 
are  presented.  Qualitative compar ison is made with experiment.  

The burning of cyl indrical  samples of N powder on a copper plate was studied experimental ly  in [1, 
2]. A state of combustion was observed in which the stage of ignition was followed by one of steady prop-  
agation, and then a cessat ion of burning as the combustion front approached the plate, this la t ter  stage 
being attributed to the outflow of heat f rom the combustion zone to the plate, which had a far  g rea te r  the r -  
mal conductivity than the powder. It  was found that, after  burning had ceased, a thin layer  of unconsumed 
powder remained  on the plate, its thickness depending on the p re s su re  and initial t empera ture ;  exper imen-  
tal data were obtained as to the relationship between these three quantities. 

An approximate theory of the phenomenon based on a model of combustion proposed  by Ya. B. Ze l ' -  
dovich [4] was developed in [2, 3]. In this paper  we shall attempt a more  detailed theoret ical  description 
of the mode of combustion studied in [1, 2]. Using an electronic computer  we shall obtain a numer ica l  so-  
lution to the problem of the t ransient  combustion of a layer  of typical condensed composit ion on a metal  
plate. As our model of combustion, we use one with an extended zone of dispersion,  as proposed in [5, 6], 
with a continuous transit ion f rom the condensed to the gas phase. 

1. P r e s e n t a t i o n  o f  t h e  P r o b l e m .  M o d e l  o f  C o m b u s t i o n .  M a t h e m a t i c a l  
F o r m u 1 a t  i o n .  In accordance  with the experimental  conditions, we consider  the one-dimensional  p rop-  
agation of the zone of combustion along a flat layer  of k phase, the thickness of which at the initial instant 
of t ime t = 0 equals L. The thermal  conductivity of copper and the total heat capaci ty  of the copper  disc 
are  very  high, and we may therefore  consider  that, in burning, the tempera ture  at the powder /meta l  in te r -  
face (x = 0) remains  constant and equal to that of the surrounding medium T 0. At the initial instant the sam-  
ple tempera ture  equals T 0. Let us assume that at the initial instant the t empera tu re  of the surface of the 
powder (x = L) becomes equal to the t empera tu re  of the flame T .  and retains  this value the whole t ime, a l-  
though the combustion front (leading edge) will move away from this point on account of the consumption 
of the k phase. 

We must  here  r e m e m b e r  that, in the absence of combustion, if  at the initial instant the tempera ture  
takes the values T O and T,  at the points x=0  and x= L, respect ively,  the region 0 - < x -  < L s ta r t s  heating, 
and this p roces s  ends by the establ ishment  of a l inear  s teady-s ta te  t empera ture  distribution. However, 
the p rocess  of heating takes place ve ry  much more  slowly in the absence of heat evolution, and its influ- 
ence appears  after  extinction. 

We shall s ta r t  f rom the combustion model proposed in [5, 6]. 

In this model i t  is  assumed that the t ransformat ion  of the k phase into gaseous react ion products  
takes place in such a way that there is no sharp k phase /gas  interface.  The gas  is evolved within the vol -  
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tune of the k phase in the form of small  bubbles, the number  and size of which increase  continuously, the 
k phase swells, and the mean density of the mater ia l  diminishes.  The zone of t ransformat ion  of the k 
phase into gas thus occupies an infinite region. The model gives an accurate  description for the combus-  
tion of cer ta in  condensed sys tems  and enables the s teady-s ta te  rate of burning to be established and the 
s teady-s ta te  concentrat ion and tempera ture  profi les  to be determined [5, 6]; it also ref lects  certain cha r -  
ac ter i s t ic  features of the burning of N powder. 

We assume that, when burning occurs  in a condensed system, there is an i r r eve r s ib le  chemical  r e -  
action of the f i rs t  order .  The react ion t r ans fo rms  condensed substance A i into gaseous products  A 2 and is 
charac te r ized  by a thermal  effect Q. The reaction veloci ty obeys the Arrhenius  law with a frequency fac-  
to r  B and an activation energy E. The original substance does not contain any bubbles and consis ts  en-  
t i re ly  of the k phase, its density being equal to P0- 

The gas bubbles appearing in the k phase during the chemical  reaction are  small  and are  on average 
uniformly distributed throughout the mass  of condensed mater ia l .  The gaseous products  a re  insoluble in 
the k phase and sat isfy the equation of state of an ideal gas. 

Let Pl, P2 be the effective densit ies of substances A 1 and A2, calculated on the assumption that both 
mater ia l s  a re  distr ibuted uniformly over  the whole volume at each point in space. Then the average den- 
sity of the condensed sys tem is 

P = Pl + P2 ( 1 . 1 )  

The mass  proport ions  of substances A1, A 2 are  

a l  --~ Pl / P, a s = I - -  a 1 ( 1 . 2 )  

Let us express  the average density p in t e rms  of the mass  proport ion a l ,  the p re s su re  p, and the 
tempera ture  T. We assume that the p re s su re  is the same in all the gas bubbles and equal to the external 
p ressure ,  while heat t r ans fe r  takes place so quickly between the gas and the k phase that the gas and the 
k phase have the same tempera ture  at every  point. 

The equation of state of the gas in the bubbles takes the form 

p = M2-1P2*RT (1.3) 

Here R is the universal  gas constant, M 2 is the molecular  weight of the gas, p~* is  the true gas den- 
sity. 

The effective density P2 is related to the t rue density by 

p~ 
v2* -= i - p1/p0 

It  follows from (1.1)-(1.4) that 

(1.4) 

P = P0 ~.M~ p P0(i--al)  +a l J  -1 (1.5) 

The local thermophysicaI  proper t ies  of the sys tem are  charac te r ized  by the average values of the 
specific heat c and the thermal  conductivity ~. The specific heat of the sys tem is given by 

cp = c191 + c~9 2 (1.6) 

where c{ is the specific heat of the k phase and c 2 that of the gas. 

It  follows f rom (1.6) and (1.2) that 

c ~ c 1 al +" c2 (i -- al) (1.7) 

The thermal conductivity ~, according to [7], is given by 

(v1 + v~) = ~ v l  + ~v~ (z.s) 

Here ~I is the thermal  conductivity of the k phase,  V i is the specific volume of the k phase, V 2 is the 
specific vohune of the gas, and ~2 is  the thermal  conductivity of the gas. 

Clear ly  
p 0 V I = p l ( V I +  Y~), p~ = ( V l +  Y~)(p0--pl) 
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Hence 

- X._~2 R T  RT al)]-1 (1.9) 

W e  assume that kl and k 2 are  independent of tempera ture  and p ressu re .  

There is no representat ion of a burning surface in the model of [5, 6]. When consider ing s teady-  
state problems this has no effect on the resul ts ,  since in the s teady-s ta te  case all the points on the t e m -  
pera ture  and concentration profi les  move at the same velocity, the s teady-s ta te  veloci ty of combustion. 
These profi les  resemble  each other at different moments  of time. In t ransient  problems the t empera tu re  
and concentration distributions no longer possess  this property,  and the concept of a combustion velocity 
becomes indeterminate.  In order  to eliminate this indeterminacy,  we Cake the veloci ty of the plane on 
which the relat ive volumetr ic  proport ion of the gaseous combustion products  is constant as the t ransient  
combustion velocity, i .e. ,  the degree of dispersion a - - V 2 / V I =  const. This quantity may be taken as equal 
to 0.5 in the case  of the combustion of N powder, w~ch  approximately corresponds  to the degree of dis-  
pers ion on the burning surface.  

Let us write down the equation and boundary conditions describing the t ransient  p rocess  of the c o m -  
bustion of the powder on a metal substrate  for the model in question. 

The equation of conservation of mass  is 

op Om 
O-7" + ~-~ = 0, m = pu (1.10) 

Here m is the mass  veloci ty and u the l inear velocity of the substance. The change in density de- 
scr ibed by Eq. (1.10) takes place as a resul t  of the gradual t ransi t ion of some of the condensed mater ia l  
into the gaseous state. 

The equation of conservation of the react ing substance is 

0al 0al - -  E ( i .  1 i )  p --~ --- - -  m --~ - -  Bpa  1 exp 

The equation of energy conservat ion is 

OT OcT - -  E 
P " ' ~  = 0 k ~ )  - -  ra ~ :~ B Q  pal  e x p  R T  (1.12) 

The expansion of the condensed sys tem as a resul t  of the formation of gaseous products  may be r e -  
garded as iner t ia less ;  hence, the equation of motion takes the form p=cons t .  

The boundary conditions a re  

x=0 ,  T(0, t)=T0, al(0, t ) = i ,  m(0, t )=0  (1.13) 
x = L ,  T ( L ,  t ) - -  T ,  = Q / c ~ - } - c l T o / c ~  

The initial conditions are  

t = 0 ,  T(x, 0) = To, al(x, 0) = i ,  T(L, 0) = T, (1.14) 

In accordance  with the definition introduced in the foregoing, the coordinate of the surface of com-  
bustion x s is given by the equation 

V~ (~.) (1.15) 
a = "V1 (x s) -b V~ (%) 

In dimensionless variables  the sys tem of equations (1.10)-(1.12) and the conditions (1.13)-(1.15) may, 
after  allowing for the relat ions (1.5), (1.7), and (1.9), be written in the form 

or 0~ 
a--~" + -~- ---- 0 (1.16) 

Oa, + o) Oal ~ 7~ opal ~ i_____~) 
-~ "-~- - -  2 (-(~-+---i) exp =0 (1.17) 

(pA~--~- A-~- -}-a}A O~ 2(i-t-~) =0  (1.18) 
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= O, 0 (0 ,  ~) = z (0 ,  ~) = O, a (o,  ~) = 1,  ~ = ~o, o (~o, v) = t 

: O, 0(~, O) : (o(~,  O) = O, a ( ~ ,  O) : 1,  t~(~0, O) : t 

(i.19) 

(1.20) 

r (O + ~) (t -- a~) 
(1 T ~) al  -t- r (O -~ ~) (t  - -  al) 

(i.21) 

Here 

--m~ t, ~ moc~ m 6 : cl 
k2pM~ = ~ X, (0 : m'--~ ' e.,. 

T - -  To ~o : moc2 ~i p o R T ,  
~=T,--T---------~' ~ - 2 7 - L ,  1=-~7, , r =  M~p 

E Q To 
T='-R-T-,,  Z - -  c~(T , - -To)  ' ~ - T , - T o  

mo~ = 2 L ~ M z p B T  , Q-~ E-~ exp  ( ; -  E / TIT , ) ,  A = t - -  al  -l- ai~ 

In pass ing f rom Eq. (1.12) to Eq. (1.18) we have used Eq. (!.11). As m 0 we choose the s teady-s ta te  
velocity of propagation of the combustion front defined by the Z e l ' d o v i c h - F r a n k - K a m e n e t s k i i  formula. 
Equations (1.16)-(1.18), together  with conditions (1.19) and (1.2), determine the functions d((,  ~), w((, T), 
al(~, T). Equation (1.21) serves  to find the t ransient  motion of the combustion surface (s =~s (T). 

2.  M e t h o d  o f  S o l u t i o n .  The problem (1.16)-(1.21) is a nonlinear boundary problem for three 
equations in part ia l  derivatives.  The solution may  be obtained by numerical  integration on a computer.  
For  solving Eq. (1.18) we use an implicit  four-point scheme with space and t ime steps respect ively  equal 
to h and k. The scheme is absolutely stable for the heat-conduction equation with constant coefficients,  
whatever the value of k / h  z. The computing region (0, ~0, T) is divided up in the following way: 

~,~ = nh  (n = O, 1, 2 . . . . .  N ) ,  " ~  : m k  (ra = 0 ,  t ,  2 . . . .  ) 

The values of the functions at the point (nh, mk:) are subsequently denoted by an upper index m and a 
lower index n. 

The derivative with respec t  to time is written 

rn+l m 
O0 ~Or` --Or, 
a ~  k 

The first term on the right-hand side of Eq. (1.18) takes the form 

(2.i) 

m m+l m+l  Am /,o.m +1 m+l 

,rn m m 
An•  = A (al, ~,+_'1,, "~n~:'l,) 

,,, <,~ + <,~, ,~+_~ ,,, e~  + %+_1m 
al, nAV, = 2 - ,  ~n2'12 : 

( 2 . 2 )  

The derivative with respec t  to the coordinate ~ may be written 

~acm +I ~%m+l 
0 0  - -n  -- --T~-I 

at ~ h (2.3) 

Express ing all the coefficients and also the fourth t e rm in Eq. (1.18) in t e rms  of the values of the 
variables  in the m- th  layer,  we obtain a difference equation which approximates the differential equation, 
with a residual  t e rm O(h+ T) l inear  with respec t  to the values of ~ in the m+ 1-th layer,  

A~+It~m+i 2Bm+i@m+i • ~n+i ~+i m+i ~+i - -  ,~ ~ ~ Cr` ~-i = D ~  ( 2 . 4 )  

with the conditions ~0 m+ 1 = 0, ~ +  1 = 1. 

Here 
rn  m rtl Tn r n  rn  m 

A m+l  = An+th~, 2Bnm+l An+ 'h  h 2-[- An-'~2" -~ (~ -~ (Pn Ank 

m rn m 
cm+l An-!A O)n-vzAn-v2 
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q~nmA "t GT [ 
D~m+l = -- ~nm k t2 (1 + p) [1 + (8 -- t) ~n ~] exp T (~nrn -- l)] _ ,ha,  , 

We solve Eqs. (2.4) by asymptote fitting. 

In solving Eq. (1.17) we use an implici t  three-point  scheme. We write 

am+l arn+l m + l  m 
Oal l, n - -  1, n-1 Oal al, n ~ al, n 
O~ ~ h ' -0~ ~ k 

Express ing  the coefficients and the last t e r m  on the r ight-hand side in t e rms  of the value of the 
function in the m- th  layer ,  we obtain a r ecu r r ence  formula for anm+l_ , 

' m [ ~  m earn 1-1 
rn+i m+i , ,  m o) V, I'~n ~_ ~n-'/~| 

al ,  n : a i . n - l o n  "~-Fnm, ' S n  '~ ~ '  ~ L k - -  h J 

rn ~ t ~ exp ~- ' F~ TM ~ q~ al. n h 2 (i + ~) ~ " -  
~n +P 

. m +  1 with the condition -1,0 �9 

As we now know the values of 0 and a 1 in the m +  1-th layer,  we may find the values of .m+ 1 f rom ~n 
the equation approximating (1.16). 

We obtain 

n : r  - -  n (q)n - -  q)n') k - i  

(2 .5)  

(2.6) 

(2.7) 

with the condition r n+ 1=0. 

After determining the values of ~, al, 0J in the m+ 1-th layer ,  we may pass  to the m+ 2-th layer,  and 

SO on. 

In order to find the law governing the motion of the surface on which condition (1.21) is satisfied, we 

carry out a linear interpolation between the space nodes of the network for ~n -< ~-< ~n+ I 

n n 
~m+i - -  ~ m  m rn 

~n+l -- n ( ~ n + l  - -  "O'nrn) " ~ (~,n) = h ~,n + (2.8) 

a n _ a n 
: a l  n (~$n) 1, m + l  1, m n rn a m 

h ~ , n  _~ a l ,  m - -  n ( a l ,  n + l  - -  1, n )  ( 2 . 9 )  

n Solving Eqs. (2.8), (2.9), and (1.21), we obtain a quadratic equation in aI  (~,n). Taking the root  lying 
between 0 and l ,  we obtain the values of aln(~,n), ~n(~,n), ~.n. The validity of this difference scheme was 
verified by making a control  calculation with different values of k. The resul ts  agreed  ve ry  closely.  

A calculation was ca r r i ed  out for a number  of initial t empera tu res  T0=275 , 300, 325,350~ with a 
p r e s s u r e  of p= 0.44 c a l / c m  3 (19 atm), and for a number of p r e s s u r e s  p=0.44,  0.66, 0.88 (ca l / cm 3) at 

T o = 300~ 

In the ease of p= 0.44 c a l / c m  a and T0=300~ the values of the dimensionless  p a r a m e t e r s  equal 8 = 
0.85, l = 2.43, ~= 1.09, ~/= 14.27, r=  176.67, fi=0.61. These values in par t icu lar  cor respond  to the following 
physicochemical  cha rac te r i s t i c s  of the model combustion system: E = 22,200 ca l /mole ,  Q= 180 c a l / g ,  
e= 0.66, c1=0.29 c a l / g ,  deg, c2= 0.34 c a l / g  .deg,kl=3.65 �9 10 -4 c a l / s e c ,  cm .deg,k2 = 1 .5 .10 -4 c a l / s e c -  cm- 
deg,~ = 0.5, 1VI2=30 g /mole .  

3 .  R e s u l t  s .  F igures  1-3 i l lus t ra te  the s p a c e - t i m e  picture of the p roces s  in hand. Figure 1 
shows the tempera ture  distribution for var ious  values of the dimensionless t ime, Fig. 2 the concentration 
distribution of mass  velocity. Numbers  1-15 in the f igures cor respond  to the following instants of t ime ~n: 
26, 104, 234, 286, 387, 488, 589, 690, 791, 993, 1094, 1299, 1325, 1429, 1455. 

It  follows f rom the choice of dimensionless pa rame te r s  that all the quantities with the dimensions of 
length are  r e f e r r e d  to the thickness of the s teady-s ta te  thermal  layer  in the gas. 

We see f rom the graphs that the whole p rocess  may be divided into three stages:  ignition, s teady 
propagation, and extinction. 
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At the f i rs t  stage there is a r ise  in tempera ture  and a fall in 
the concentration of the r eac t ing  substance close to the igniting 
surface.  The medium star ts  moving. The tempera ture  r i se  is 
here associa ted with two factors :  heat evolution due to the chem-  
ical reaction,  and the inflow of heat f rom the igniting surface.  The 
second factor explains the slight r i se  in the local  tempera ture  of 
this zone above T, .  The combustion surface (c~ = 0.5) f i rs t  moves 
in a nonuniform manner,  then at a distance of ~ =~0 f rom the su r -  
face, equal to ~0-~ ~ 1.8, the s teady-s ta te  mode sets in. The t r an -  
sient mode is replaced by the steady state at approximately the in-  

stant ~-=T s. The distribution of the pa rame te r s  in the combustion zone becomes s imi lar  at different mo-  
ments of time (second stage). 

The dimensionless mass  velocity of combustion is here  approximately equal to unity, in agreement  
with the resul ts  obtained in [6] when considering the s teady-s ta te  propagation of a combustion front. At a 
distance f rom the m e t a l - p o w d e r  contact  surface approximately equal to the thickness of the thermal  layer  
of the k phase the thermal  interaction of the combustion zone with the cold metal plate becomes substan-  
tial, the outflow of heat f rom the k phase increases ,  the reaction zone is "frozen, ~ and the velocity of the 
burning surface falls (third stage). This causes  the sharp spatial t empera ture  front to vanish and reduces 
the slope of the whole tempera ture  profile.  The react ion velocity diminishes and the propagation of the 
burning front ceases .  Subsequently the tempera ture  distribution asymptot ical ly  tends toward the steady 
state. 

In order  to compare  the resul ts  of the calculation with the experimental  data of [1, 2], we must  r e -  
late the thickness of the unburnt layer of k phase to the pressure and initial temperature. As the thick- 

ness of the unburnt residue s we take the minimum distance within which the combustion surface ~ =0.5 
approaches the surface ~ = 0. We assume that the velocity constant of the chemical reaction depends on 
the pressure as B = B0p n. Then the pressure dependence of the steady mass velocity of combustion may be 

written m 0 ~pV, ~=(n+ 1)/2. 

The results of the calculations relating to the thickness of the unburnt layer at different pressures 

were approximated to a fair accuracy by the formula 

Ins = const --  v In p (To = c0ast) 

The resul ts  of the calculations of s for  different initial t empera tures  may be approximated by the 
formula 

(01n s~ 0 in m0)p = -- i  

The foregoing considerat ions show that, despite the relat ively simple nature of the original combus-  
tion model, the resul ts  provide an excellent description of the p rocess  of powder combustion. The form 
of the s = s(p, T 0) relationship obtained by the numerica l  solution of the problem agrees  with experimental 
data. For  a more  prec ise  quantitative analysis  it is f i rs t  essential  to have a more  detailed knowledge of 
the physicochemical  proper t ies  of the powder; secondly, it is essential  to perfec t  the combustion model, 
allowing for the occurrence  of severa l  react ions in the condensed and gas phases,  and also diffusion in the 
gas. 
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